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Abstract
The structure of the Lindblad equation of motion of quantum states is discussed.
General specifications for this motion to lead asymptotically into equilibrium
states are given. Incomplete ‘thermalization’, i.e. the Lindblad motion of only
a selected subset of quantum states leads to a reduced quantum system whose
observables are explicitly constructed and seen to incorporate memory terms.
It is shown that under rather general conditions the absolute value of Lindblad
operators is given by the (inverse square root of the) grand-canonical probability
distribution.

PACS numbers: 03.65.Yz, 03.65.−w, 05.30.Jp

The motion of finite, closed quantum systems is described by a one-parameter group of
unitary transformations in an appropriate Hilbert space. Extending this concept to the
description of irreversible processes—approach to equilibrium, for instance—the construction
of a dynamical semigroup of time-dependent motions, i.e. maps acting on states (density
operators) or observables, was introduced [1]. Assuming complete positivity—an assumption
which allows the extension of positive maps, acting e.g. on a dynamical system �, to positive
maps on an entangled dynamical system � ⊗ C

n, for all n, thus an assumption with important
physical content—Lindblad [2] derived an explicit form of the (bounded) generators of this
semigroup acting on B(H) (the algebra of bounded operators on a separable Hilbert space H).

The celebrated equations read (throughout the paper we use units h̄ = 1)

�̇ = −i[H,�] +
∑

J

VJ �V +
J − 1

2

(
V +

J VJ � + �V +
J VJ

)
(1)

for the density operator � and

Ḃ = i[H,B] +
∑

J

V +
J BVJ − 1

2

[
V +

J VJ , B
]

+ (2)

where � is trace class and normalized to 1 and B is a bounded observable. The input is the
Hamiltonian H and bounded operators VJ .
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Whether these equations have anything to do with the description of the quantum dynamics
of open systems is a priori unclear as can be seen from the following considerations. A theory
of open systems should start from the concept of embedding the latter in a (‘large’) bath and
considering the total ‘system’ ⊗ ‘bath’ as a closed system moving unitarily with the total
Hamiltonian as a generator. The motion of an observable B of the open system is given as the
map (I is the unit operator on the ‘bath’)

B −→ trbath(�bathU(t)+(B ⊗ I)U(t)).

It is clear that these maps are completely positive; however, the formulation of general
conditions under which these maps have the Markovian property, i.e. build up an Abelian
semigroup, is a difficult task if rigorous answers are attempted. Physically speaking, the
relative magnitude of timescales has been discovered to control the Markovian property of
such maps (see [8]).

In this paper we study the asymptotic form of states � assuming the semigroup property
and the complete positivity of maps describing the motion of open systems or, equivalently,
we study the asymptotics of the Lindblad equation (1). We show that under rather general
circumstances the asymptotic form of states reveals a rather striking universality property:
for a large class of Lindblad equations the asymptotic form of states is controlled by the
Lindblad operators VJ , independently of the initial state—a situation typical for the approach
to equilibrium.

In our method bath variables are tacitly assumed implicitly to be modelled by the Lindblad
operators VJ . Very implicitly indeed, it is a formidable task to construct explicit relations even
in very simple cases.

The asymptotic form of states has been studied in the literature proposing various ‘system’
⊗ ‘bath’ models and different dynamical ansaetze. For example in [9], asymptotic quantum
Brownian motion has been studied in the quantum diffusion picture (stochastic Langevin–Ito
equation) and by using the path integral representation of the Green function for the density
operator. Another example relevant in our context is found in [10]. The authors discuss
the relation between the dynamics of classical and quantum systems under the influence of a
measuring process. The latter is modelled by coupling a set of oscillators, thermally distributed
or selectively coupled. Elimination of the measurement process leads to a Lindblad equation
similar to the one set up to describe the dynamics of a single atom maser [11], asymptotic
solutions are given. However, it has to be noted that this equation is beyond the scope of
Lindblad equations considered in this paper: the absolute value of its Lindblad operators is
not bounded and admits a zero mode contrary to our assumptions. A tangible consequence of
this fact is that the parametrization of the absolute value of a Lindblad operator by the Gibbs
distribution, derived in this paper, is obviously not possible.

In the following discussion, we consider the case of only one Lindblad operator V and return
to the general case at the end of the paper, in section D.

We have shown in [3] that the polar decomposition [4]

V = U |V |
plays a key role in the interpretation of the motion generated by the Lindblad generator. The
absolute value |V | is a nonnegative self-adjoint (s.a.) operator

|V | = (V +V )1/2

and U is a partial isometry. We assume V +V is positive (for a collection of the assumptions
discussed in [3, 5] and implicitly used here see the appendix)

V +V > 0
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and, hence, U is unitary. Defining

W = (V +V )−1

and

�̃ = W−1/2�W−1/2

we rewrite the Lindblad equations as

W 1/2 ˙̃�W 1/2 = −iW 1/2[H, �̃]W 1/2 + U�̃U+ − 1
2 (W 1/2�̃W−1/2 + W−1/2�̃W 1/2) (3)

and

W 1/2ḂW 1/2 = iW 1/2[H,B]W 1/2 + U+BU − 1
2 (W 1/2BW−1/2 + W−1/2BW 1/2) (4)

where we used the key assumption

[W,H ] = 0 (5)

which is a posteriori justified by observing that W figures as the (operator of the) probability
distribution (non-normalized) of final states in the ensemble into which an arbitrarily given
initial state develops by Lindblad motion. For the sake of clarity we reiterate the argument
given in [3] in greater detail. Let us begin with the discussion of the motion of an arbitrary
state �0 (which is trace class by the very notion of a quantum state and tr(�0) = 1). We see
that by assumption (5) the trace of the rhs of (3) vanishes identically in �̃ so that we reproduce
the normalization condition (tr denotes the trace in H)

tr(�̃W) = const = 1.

Furthermore, we see by inspection of (3) and (4) that a multiple of the identity is a stationary
solution. The completely dissipative [2] character of the Lindblad generator leads to (for
details see [5])

�̃ −→ const × I

and

B −→ b(∞)I (6)

with

b(∞) = tr(B|t=0W)

tr(W)

for t → ∞, so that, in particular

tr(�̃0W) = tr(�) = const × tr(W)

and, hence

�̃ −→ I

tr(W)

or

�|t=∞ = W

tr(W)
(7)

:= PW

for all initial states �0 : W/tr(W) is the probability distribution of pure states in the final
state �|t=∞, Lindblad motion transports an arbitrary quantum state �0—in particular any pure
state—into the state PW which has lost any trace of the structure of the initial state.

Denote

O = [Qγ |γ = 0, 1, 2, . . .] (8)
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with

[Qα,Qβ ] = 0

all α, β = 0, 1, . . . , a set of mutually commuting operators (the Hamiltonian H is taken as
Q0 : H = Q0) defining a complete measurement, and note that because of (5) we have

W = W(H,Q1, . . .)

a relation we shall exploit in the next section. Here this relation leads us to the following naive
realization of equilibrium states: the stationary state, reached asymptotically from any initial
state by Lindblad motion whose probability distribution depends only on constants of motion
will be dubbed equilibrium state.

Roughly speaking, relation (6) which holds for any (bounded) operator tells us that,
asymptotically, the system ‘looses’ all dynamical variables which is another way of noting the
equilibrium nature of asymptotic Lindblad states.

In [3], we have seen that these observations generalize to cases where only a selected
subset of quantum states undergoes ‘Lindbladization’, i.e. are asymptotically eliminated. This
partial elimination of a selected set of degrees of freedom via the construction of asymptotic
solutions of (1) or (2) leaves us with a reduced set of observables of the resulting system.
The Lindblad equation thus provides a physically motivated procedure for the elimination of
selected degrees of freedom, the physical motivation hinging on the already mentioned notions
of complete positivity and semigroup structure of dynamical maps. To be more specific on
the precise meaning of the degrees of freedom to be eliminated let us decompose the Lindblad
operator in the following way

V = ((Ṽ ik) ⊗ I)

the indices (ik) enumerate a selected set of quantum numbers of certain degrees of freedom.
Physically two selection criteria apply:

(i) The partial elimination of K degrees of freedom Qλ : (ik) denote quantum numbers
separated from the rest of the spectrum by scales. For example, consider the energy
spectrum of a molecule where electronic, vibrational and rotational components differ by
scales of an order of magnitude.

(ii) The total elimination of degrees of freedom Qλ. Here the indices (ik) run over all of the
spectrum. A typical example is the elimination of variables describing the dynamics of a
(heat-) bath.

We now perform the trace, with respect to the levels to be eliminated, of equation (4) and
denote this operation by T̃r. Separating the levels to be eliminated we endow the Hamiltonian
with a product structure and write

H = ((H̃ ik) ⊗ H)

to obtain [3]

T̃r(BW) = C +
∫ t

0
(H T̃r(W̃H̃B(t)) − T̃r(W̃B(t)H̃ )H) dt

where

W = ((W̃ ik) ⊗ I)

and

W̃ = (Ṽ +Ṽ )−1.
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We immediately see that the second term contains the history B(t) of the quantum evolution
of the initial configuration B|t=0. It is, however, important to note that the integrand of the
memory term is different from zero only in the initial phase of the time evolution.

B tends to cI for times exceeding the relaxation time (equation (6)), hence

[H, B(t)] = 0

for

t � trelaxation

and

[H̃ , W̃ ] = 0

because of

[H,W ] = 0.

Thus T̃r(BW) is a constant of motion for times larger than the relaxation time and contains a
contribution which relates to the history pertaining only to the approach to equilibrium. It is
therefore small for small relaxation times. The statement sometimes found in the literature,
namely that the Lindblad equation is a ‘Markovian equation of motion’ has to be seen cum
grano salis, with a big grain of salt indeed.

In this section we shall address the problem of finding a physically adequate interpretation,
and in the following a parametrization with parameters which can be measured in independent
experiments and thus have relevance for physical processes not related to the relaxation process
considered. We are trying to establish a natural relation of Lindblad operators to observables
relevant for the description of equilibrium states.

As a first step we evoke the KMS condition [6] for the correlation function in an equilibrium
state �e

〈A(t)B(0)〉 = 〈B(0)A(t + iβ)〉
with

〈A〉 = tr(�eA).

This condition has been used as a starting point for the definition of an equilibrium state
[7] and plays a central role in the theory of thermal equilibrium. In particular, it implies
that the density operator for an equilibrium state is proportional to the canonical probability
distribution [6]

�e ∝ exp(−βH)

in addition it shows that the (symmetrized) two-point correlation function is periodic with
period iβ and is holomorphic in the strip 0 � �(t) < β.

It is clear that any of the observables Qi,Qi ∈ O specified in (8), generates a group of
automorphisms �

� : A0 
−→ Aσ = exp(−iσQi)A0 exp(iσQi)

via the equation

∂σ = −i[Qi,A]

where σ is some real parameter. If we continue σ to purely imaginary values

σ 
−→ iτ



5600 K Dietz

we have

∂τ = [Qi,A]

and � is no longer a Hermitian map (� is Hermitian if �(A+) = �+(A),� ∈ B(H)).
Define

� : A0 
−→ Aτ = exp(−τQi)A0 exp(τQi) + exp(τQi)A0 exp(−τQi)

a Hermitian map B(H) −→ B(H).
The Qi also generate another type of transformation via the equation

∂µ = −[Qi,A]+

i.e. the Hermitian map

 : A0 
−→ Aµ = exp(−µQi)A0 exp(−µQi).

We are now in the position to interpret the Lindblad operator in terms of these transformations.
Let B be an observable whose Lindblad motion we are going to consider

Ḃ = LL(B).

The Lindblad equation can then be written as

(Ḃ − [H,B]) = LD.

We have to guarantee that

LL(B+) = L+
L(B)

and

LL(I) = 0 (9)

which of course means that LL is Hermitian and the generated map maps I into I. The
generator LD is connected with the transformation � which complies with the first condition,
to fulfil the second requirement we introduce an arbitrary unitary operator U and write

LD(B) = U+BU − 1
2�σ (B)

so that the Lindblad equation now reads

σ(Ḃ) − [H,σ (B)] = U+BU − 1
2�σ (B).

It is clear that instead of considering only one generator Qi we can take some of the generators
Qj, j = 0, 1, . . . ,M and construct generalized operations  and � generated by the equations

∂σj
A = [Qj,A]

∂σj
A+ = −[Qj,A

+]
(10)

∂τj
A = [Qj,A]+ j = 1, . . . ,M (11)

so that

� : A00...0 
−→ Aσ0σ1...σM
= exp

(∑
σjQj

)
A00... exp

(
−

∑
σjQj

)

+ exp
(
−

∑
σjQj

)
A00... exp

(∑
σjQj

)

 : A00...0 
−→ Aσ0σ1...σM
= exp

(
−

∑
σjQj

)
A00... exp

(
−

∑
σjQj

)
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and

∂tσ0...σM
(B(0, . . . , t)) = i

[
H,σ0 ...σM

(B(0, . . . , t))
]

+ U+B(0, . . . , t)U − 1
2�σ0...σM

(B(0, . . . , t)). (12)

Comparing with (4) we have

W = exp
(
−

∑
σjQj

)

and

PW = exp
(−βH − β

∑
αjQj

)
Z(β, α1, . . .)

for the probability distribution of the final state (7); the partition function for the asymptotic
equilibrium system is then

Z(β, α1, α2, . . .) = tr
(

exp
(
−βH − β

∑
αiQi

))
(13)

where we identified σ0 with the inverse temperature and the αi with the chemical potentials
corresponding to the observables Q1, . . . ,QM . We have thus found a parametrization of the
Lindblad operator V

V = U exp
(

1/2
(
βH + β

∑
αiQi

))

suggested by the interpretation of

tr((V +V )−1)(V +V )−1 = PW

as the asymptotic density operator—the absolute value of V is given as the inverse square root
of the grand-canonical distribution, its ‘phase’ is given by a (unspecified) unitary U .

We now turn to the case of several Lindblad operators Vj , j = 1, . . . . In this case there is
a plethora of possibilities, some models have already been discussed in [3]. In the following
we propose an ansatz which seems reasonable for physical phenomena where the dynamics of
many physically different systems is controlled by one and the same Hamiltonian. Quantum
electrodynamics is an important example for such a situation: practically all phenomena
in the range between the Lambshift or the g-2 effect to electron–positron pair production
(energies around 1 MeV) are described by one Hamiltonian—atomic, molecular and solid-
state effects. One of the processes we envisage in the context of this paper is the disintegration
of a molecule into some of its constituents. The disintegration dynamics for such processes
is controlled by projections onto subsystems corresponding to these constituents and which
are selected by the required number of electrons in the nonrelativistic, by the total electron
charge in the relativistic case. In this case it seems reasonable to assume that the absolute
value of all Lindblad operators is determined by the Hamiltonian of the total system—the
QED Hamiltonian in our example. The same holds true for the other operators Qi introduced
in (8). With these specifications we write

VJ = UJ exp
(

1/2
(
βH + β

∑
αiQi

))
.

The Lindblad equation now reads

∂t (σ0σ1...(B(0, . . . , t))) = i[H,σ0σ1...(B(0, . . . , t))]

+
∑

J

U+
J B(0, . . . , t)UJ − N/2�σ0σ1...(B(0, . . . , t)) (14)

a similar equation holds for the density operator.



5602 K Dietz

Summary. The key element in our treatment of the Lindblad equations (1) and (2) was to
rewrite them in the form (3) and (4) using the polar decomposition of the Lindblad operators
VJ . The trace of the rhs’s of the latter equations is immediately seen to vanish identically
in �̃ and B, respectively. Take one of the Qj introduced in (8) which is a constant under
Hamiltonian motion, Lindblad motion on the other hand leaves only

tr(Qj(t)W) = const

invariant. Furthermore, we derived that any initial state �0 develops into the equilibrium
distribution PW

�0 −→ PW = W/tr(W)

so that the asymptotic expectation value is given in terms of the initial (t = 0) configuration
as

〈Qj(t)〉 −→ tr(Qj (0)PW)

for t −→ ∞. We now take the standpoint that our system is Lindblad-transported into
the equilibrium state PW , evoke the KMS condition for the latter and conclude [6] its
proportionality to the canonical distribution. It is clear that any of the Qj ∈ O generates
a corresponding motion in some parameter, hence we expect a KMS condition to hold for
the analytic continuation in this parameter: we conclude the proportionality of PW to the
corresponding equilibrium distribution (σj denotes the imaginary part)

PW ∝ exp(−σjQj ).

Assuming the KMS condition for a selection of some Qj dictated by the physics of the process
under consideration we end up with the grand-canonical distribution

PW = exp
(−βH − ∑

βαjQj

)
Z(β, α1, . . .)

.

The motions generated by the Qj for purely imaginary parameters have a physical
interpretation: the form of (3) and (4) suggests that their structural elements derive from
the corresponding equations of motion (10) and (11), as is clear from the construction of
the maps  and �. Starting from a configuration B(0, 0, . . . , 0) at time 0 we endow this
configuration with an (inverse) temperature β and chemical potentials αj by transforming

B(0, 0, . . . , t) 
−→ B(β, βα1, . . . , t) = (B)(0, 0, . . . , t)

and

B(0, 0, . . . , t) 
−→ B�(β, βα1, . . . , t) = (�B)(0, 0, . . . , t)

the Lindblad equation (12), seen as an equation for B(0, 0, . . . , t), finally defines the initial
value problem leading asymptotically to the equilibrium state determined by the inverse
temperature and the chemical potentials introduced by these transformations. The approach
to equilibrium is controlled by a unitary operator U which entered the scene because of the
condition (9) and stands for the unitary in the polar decomposition of the Lindblad operator
V . This discussion immediately generalizes to the case of several VJ as is seen in (14).

Appendix

It seems worthwhile to recollect the assumptions formulated in [3, 5] which lead to the result
(7). First of all the Lindblad operators V are assumed to be bounded in the uniform metric;
furthermore, it is essential to assume that V +V be invertible, i.e. V +V > 0, and trace class.
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The latter assumption simply means that we stipulate normalizable probability distributions
(7). Relation (6) finally was derived under the assumption of irreducibility of the Lindblad
equations: there is no basis in the underlying Hilbert space in which the Lindblad equation
disintegrates into a set of independent equations (see [5])—as we discussed in this reference
this is the generic case. In the reducible case the dissipative Lindblad term in (1) or (2) can
be represented as a direct sum of (irreducible) operators so that the asymptotic solution (6) is
now a direct sum of multiples of unit operators acting in the irreducible subspaces in which
these independent Lindblad equations operate. In terms of formulae we have

�̃ −→
⊕

α

bα(∞)Pα

where

Pα =
∑

k

|k〉α〈k|α
is the projector on the irreducible subspace Hα. For the asymptotic state we then have instead
of (7)

�|t=∞ =
∑

α

P α
W Nα

where

Pα
W = Wα/tr(Wα)

is the normalized probability distribution for the system (α),

Wα = PαWPα

and

Nα = tr(Wα)/tr(W)

is the probability weight of Hα in H. Written in this form the asymptotic state has a clear
probabilistic interpretation. The irreducibility assumption excludes Hermitian Lindblad
operators and in particular the choice U = 1 in the polar decomposition defined above.
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